
#ossummit

@

Advanced System Profiling, Tracing
and Trace Analysis with Perfetto
in Android and Yocto

Anna-Lena Marx & Stefan Lengfeld, inovex

#ossummit

@

Advanced your System Profiling, Tracing
and Trace Analysis with Perfetto
in Android and Yocto

Anna-Lena Marx & Stefan Lengfeld, inovex

Anna-Lena Marx

Embedded Systems Developer

● since 2015 with inovex
● has a Master’s degree in Embedded Systems
● studies Electrical Engineering as a hobby

Main Topics

● Embedded Systems
● Yocto Linux
● Linux Kernel
● AOSP/AAOS
● IoT

3

Anna-Lena Marx

marx.engineer

anna-lena.marx
@inovex.de

http://www.linkedin.com/in/anna-lena-marx-embedded
https://marx.engineer
mailto:anna-lena.marx@inovex.de
mailto:anna-lena.marx@inovex.de

Stefan Lengfeld

Android and Linux Embedded Developer

● since 2017 with inovex
● since 2014 a professional embedded software developer
● many more years a linux enthusiast

Main Topics

● Embedded Systems (Linux and Android)
● Linux Kernel
● Build systems
● Linux Graphics Stack

4

lengfeld

Stefan Lengfeld

stefan.lengfeld.xyz

stefan.lengfeld
@inovex.de

https://github.com/lengfeld
https://www.linkedin.com/in/stefan-lengfeld
https://stefan.lengfeld.xyz
mailto:stefan.lengfeld@inovex.de
mailto:stefan.lengfeld@inovex.de

Agenda for today

● Perfetto

● Record traces in Linux in general and Android

● Perfetto SDK add custom trace events in C++

● Analyzing with Perfetto UI (and command line tooling)

● Recap summarize it up!

5

Perfetto

6

Why do we speak about an Android tool?

7

We learned to love ❤ systrace in our Android
Embedded Projects. Having the successor available for
the Linux kernel, the system and application use-cases

in general is great!

Thus, we want to share how perfetto and it’s powerful UI
can advance tracing and analyzing.

From Catapult to Perfetto

8

Catapult

Perfetto

What is Perfetto?

9 https://perfetto.dev/docs/

https://perfetto.dev/docs/

What is Perfetto?

10
https://perfetto.dev/docs/

tracebox tool

Perfetto SDK

loads
trace files
directly or
via ADB

also used by
Android Studio, Android

GPU Inspector or
standalone

https://perfetto.dev/docs/

Record traces
in Linux

11

Setup on Yocto – install the tracebox tool

12

IMAGE_INSTALL:append = " perfetto” # v31.0

strace, gdb and debug symbols
IMAGE_FEATURES:append = " tools-debug dbg-pkgs"

v31.0 is from Nov 2023,
current version is v47.0!

Additional information:
https://perfetto.dev/docs/quickstart/linux-tracing
https://docs.yoctoproject.org/profile-manual/index.html

oprofile, exmap, lttng, valgrid -> x86 only
IMAGE_FEATURES:append = " tools-profile"

https://perfetto.dev/docs/quickstart/linux-tracing
https://docs.yoctoproject.org/profile-manual/index.html

https://android-review.googlesource.com/c/platform/external/perfetto/+/2583173

-> just patch with .bbappend!

13

root@raspberrypi3-64:~# tracebox -t 10s -o trace_file.perfetto-trace sched/sched_switch
[041.744] service.cc:239 Started traced, listening on @traced-p-493 @traced-c-493
[041.809] probes.cc:104 Starting traced_probes service
[041.815] probes_producer.cc:345 Connected to the service[41.825220] tracebox[494]: memfd_create()
called without MFD_EXEC or MFD_NOEXEC_SEAL set

[041.822] perfetto_cmd.cc:999 Connected to the Perfetto traced service, TTL: 10s
[041.832] ing_service_impl.cc:945 Configured tracing session 1, #sources:2, duration:10000 ms, #buffers:1,
total buffer size:32768 KB, total sessions:1, uid:0 session name: ""
[041.933] ranslation_table.cc:127 Failed to infer ftrace field type for "f2fs_truncate_partial_nodes.nid"
(type:"nid_t nid[3]" size:12 signed:0) (errno: 2, No such file or directory)

-----BEGIN PERFETTO PRE-CRASH LOG-----
[041.809] probes.cc:104 Starting traced_probes service
[041.815] probes_producer.cc:345 Connected to the service
[041.933] ranslation_table.cc:127 Failed to infer ftrace field type for "f2fs_truncate_partial_nodes.nid"
(type:"nid_t nid[3]" size:12 signed:0) (errno: 2, No such file or directory)

-----END PERFETTO PRE-CRASH LOG-----
[051.834] ng_service_impl.cc:1888 FlushAndDisableTracing(1) done, success=1
[051.835] perfetto_cmd.cc:1144 Wrote 689 bytes into trace_file.perfetto-trace

https://android-review.googlesource.com/c/platform/external/perfetto/+/2583173

Using tracebox

14

root@raspberrypi3-64:~# tracebox

Welcome to Perfetto tracing!

Tracebox is a bundle containing all the tracing services and the perfetto

cmdline client in one binary. It can be used either to spawn manually the

various subprocess or in "autostart" mode, which will take care of starting

and tearing down the services for you.

Usage in autostart mode:

 tracebox -t 10s -o trace_file.perfetto-trace sched/sched_switch

 See tracebox --help for more options.

Usage in manual mode:

 tracebox applet_name [args ...] (e.g. ./tracebox traced --help)

 Applets: traced traced_probes perfetto trigger_perfetto websocket_bridge

See also:

 * https://perfetto.dev/docs/

 * The config editor in the record page of https://ui.perfetto.dev/

Using tracebox - autostart mode

15

Light configuration flags: (only when NOT using -c/--config)

 --time -t : Trace duration N[s,m,h] (default: 10s)

 --buffer -b : Ring buffer size N[mb,gb] (default: 32mb)

 --size -s : Max file size N[mb,gb]

 (default: in-memory ring-buffer only)

 --app -a : Android (atrace) app name

 FTRACE_GROUP/FTRACE_NAME : Record ftrace event (e.g. sched/sched_switch)

$ tracebox -t 10s -o trace_file.perfetto-trace sched/sched_switch

see all available events with

cat /sys/kernel/debug/tracing/available_events

Caution:
<group>:<name> does not work!

use <group>/<name>

tracebox - trace configuration files

16

duration_ms: 10000

buffers {

 size_kb: 65536

 fill_policy: RING_BUFFER

}

data_sources {

 config {

 name: "linux.ftrace"

 target_buffer: 0

 ftrace_config {

 ftrace_events: "sched_switch"

 ftrace_events: "start_task_reaping"

 ftrace_events: "kmalloc"

 }

 }

}

tracebox --txt -c example.cfg -o example.perfetto-trace

example.cfg

tracebox - trace configuration files

17

duration_ms: 10000

buffers {

 size_kb: 65536

 fill_policy: RING_BUFFER

}

data_sources {

 config {

 name: "linux.ftrace"

 target_buffer: 0

 ftrace_config {

 ftrace_events: "sched_switch"

 ftrace_events: "start_task_reaping"

 ftrace_events: "kmem/kmalloc"

 }

 }

}

recording duration

RING_BUFFER or DISCARD (not recommended)

at least one buffer needed!

PBTX format! Pass with --txt flag!

Convert to binary format for
benchmarking on different

machines, …

linux.ftrace, linux.sys_stats, linux.process_stats,
linux.inode_file_map, linux.perf, …

plus Android specific!

https://perfetto.dev/docs/concepts/config

Examples:
https://github.com/google/perfetto/tree/main/test/configs

File schema:
https://github.com/google/perfetto/blob/main/protos/perfetto/con
fig/trace_config.proto

https://perfetto.dev/docs/concepts/config
https://github.com/google/perfetto/tree/main/test/configs
https://github.com/google/perfetto/blob/main/protos/perfetto/config/trace_config.proto
https://github.com/google/perfetto/blob/main/protos/perfetto/config/trace_config.proto

Record traces
in Android

18

Setup in Android

Much simpler than the Yocto/Linux setup!

● perfetto tools and daemon are already installed
● Enable adb on your device and visit ui.perfetto.dev

See documentation

https://perfetto.dev/docs/quickstart/android-tracing

19

Needed only on Android 9 (P) and 10 (Q) on non-Pixel phones.
adb shell setprop persist.traced.enable 1

https://ui.perfetto.dev/
https://perfetto.dev/docs/quickstart/android-tracing

Perfetto and Chromium as snap

Solution:

20

$ snap connect chromium:raw-usb

SecurityError: Failed to execute ‘open’ on ‘USBDevice’:
Access denied.

If the perfetto UI cannot connect
to your Android device,
you may see the error message:

Record traces in Android

There are three ways to record traces

● via the Perfetto UI in the browser
● with the perfetto commandline tool on the device
● with the record_android_trace helper scripts

The python script systrace.py is not available anymore. See

This package used to contain systrace, but that has been obsoleted in
favor of Studio Profiler, gpuinspector.dev, or Perfetto.

Use record_android_trace instead.

See https://stackoverflow.com/a/74005757

21

https://stackoverflow.com/a/74005757

Perfetto SDK
add custom trace events in C++
applications

22

Include SDK

23

cmake_minimum_required(VERSION 3.13)

project(PerfettoExample)

find_package(Threads)

Define a static library for Perfetto.

include_directories(perfetto/sdk)

add_library(perfetto STATIC perfetto/sdk/perfetto.cc)

Link the library to your main executable.

add_executable(example example.cc)

target_link_libraries(example perfetto ${CMAKE_THREAD_LIBS_INIT})

CMakeLists.txt

#include <perfetto.h>

int main(int argc, char** argv) {
 perfetto::TracingInitArgs args;

 // The backends determine where trace events are recorded. You may select one
 // or more of:

 // 1) The in-process backend only records within the app itself.
 args.backends |= perfetto::kInProcessBackend;

 // 2) The system backend writes events into a system Perfetto daemon,
 // allowing merging app and system events (e.g., ftrace) on the same
 // timeline. Requires the Perfetto `traced` daemon to be running (e.g.,
 // on Android Pie and newer).
 args.backends |= perfetto::kSystemBackend;

 perfetto::Tracing::Initialize(args);
}

example.cc

https://perfetto.dev/docs/instrumentation/tracing-sdk

https://perfetto.dev/docs/instrumentation/tracing-sdk

Track events

-> easiest way for custom events

● slices

● flows
-> link two or more events and mark them as related

● counters

24

TRACE_COUNTER("category", "SheepCounter", 42);

25

#include "perfetto.h"

PERFETTO_DEFINE_CATEGORIES(

 perfetto::Category("console")

 .SetDescription("Interaction with the console, like printing to stdout."));

PERFETTO_TRACK_EVENT_STATIC_STORAGE();

void write_to_console() {

 TRACE_EVENT("console", "write_to_console");

 printf("ping\n");

}

int main() {

 perfetto::TracingInitArgs args;

 args.backends |= perfetto::kInProcessBackend;

 args.backends |= perfetto::kSystemBackend;

 perfetto::Tracing::Initialize(args);

 perfetto::TrackEvent::Register();

 printf("Example has started.\n");

 while (true) {

 sleep(1);

 write_to_console();

 }

 return 0;

}

data_sources {

 config {

 name: "track_event"

 track_event_config {

 enabled_categories: "console"

 disabled_categories: "ui"

 }

 }

}

example.cc

example.cfg

Flows

26

uint64_t request_id = GetRequestId();

{

 TRACE_EVENT("rendering", "HandleRequestPhase1", perfetto::Flow::ProcessScoped(request_id));

}

std::thread t1([&] {

 TRACE_EVENT("rendering", "HandleRequestPhase2", perfetto::TerminatingFlow::ProcessScoped(request_id));

});

non-terminating

Custom data sources

Powerful tool in certain situations,
but needs corresponding changes in trace processor!

https://perfetto.dev/docs/instrumentation/tracing-sdk#custom-data-sources

27

https://perfetto.dev/docs/instrumentation/tracing-sdk#custom-data-sources

Perfetto SDK for Android?

Answer: still use atrace!

For Android-only instrumentation, the advice is to keep using the
existing android.os.Trace (SDK) / ATrace_* (NDK) if they are
sufficient for your use cases. Atrace-based instrumentation is
fully supported in Perfetto. See the Data Sources -> Android
System -> Atrace Instrumentation for details.”

See https://perfetto.dev/docs/instrumentation/tracing-sdk
and https://perfetto.dev/docs/tracing-101

28

https://perfetto.dev/docs/instrumentation/tracing-sdk
https://perfetto.dev/docs/tracing-101

Analyzing
with Perfetto UI
(and command line tooling)

29

Perfetto – CPU flame graphs extended

You maybe know
flamegraph from other
profile tools:

The Catapult TraceViewer
and the Perfetto UI are a
flame graphs on steroids!

30
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Perfetto UI Overview

31

Everything as Catapult, but nicer!

32

Time

Track

Keyboard shortcuts and navigation

33

● keyboard shortcuts
● mouse navigation
● track summary (New!)

Pin threads to the top

34

SQL for trace events

35

On the command line – the trace_processor

36 https://perfetto.dev/docs/quickstart/trace-analysis

$./trace_processor systrace.html
[340.472] processor_shell.cc:1658 Trace loaded: 20.22 MB in 1.81s (11.2 MB/s)
> SELECT min(dur/100000) as "dur in 100ns", count(dur) as count \
 FROM slice WHERE name like '%onImageAvailable%' GROUP BY dur/100000;
dur in 100ns count
-------------------- --------------------
 13 1
 14 1
 15 1
 16 1
 17 2
 18 1
 20 4
 21 3
 22 4
 23 5
 24 9
 25 4
 26 5
[...]

https://perfetto.dev/docs/quickstart/trace-analysis

Flows

37

Example: binder transactions
(IPC on the Android platform)

Many more things to discover!

Not yet tried:

● Viz
● Metric
● Info and stats

38

Recap
summarize it up!

39

Perfetto for Yocto and Android

40

Perfetto is …

● … a very powerful and good successor of the Catapult Tracer
● … really well integrated into Android ecosystem (It works just

out of the box)
● … not (yet) well integrated into the Yocto ecosystem (but it’s

promising)

What can perfetto do for you!

Perfetto helps you, because it …

● is a really powerful ecosystem
○ advancing the use of existing tools,
○ without replacing them!

● is battled tested in the Android and Chromium ecosystem
● is easy to use and powerful Tracing GUI
● has nice graphics

○ making it easy to see relations
○ directly suitable for the management level 😉

41

Tracing by example – Glass-to-glass latency in Android

42

Talk:

www.youtube.com
/watch?v=NKP4JcVegbY

www.inovex.de
/de/blog/the-glass-to-glass-latency-on-android/

Blogpost:

(still with systrace)

https://www.youtube.com/watch?v=NKP4JcVegbY
https://www.youtube.com/watch?v=NKP4JcVegbY
https://www.inovex.de/de/blog/the-glass-to-glass-latency-on-android/
https://www.inovex.de/de/blog/the-glass-to-glass-latency-on-android/

Thank you!
Time for questions.

Stefan Lengfeld
Android and Linux Embedded Developer

stefan.lengfeld@inovex.de
43

Anna-Lena Marx
Embedded Systems Developer

anna-lena.marx@inovex.de

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500 employees
● 8 offices across

Germany

www.inovex.de

mailto:stefan.lengfeld@inovex.de
mailto:anna-lena.marx@inovex.de

